
© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIRDC06036 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 203

LOW POWER DFT IMPLEMENTATION FOR

ASYNCHRONOUS FIFO

N. VINOD KUMAR1, P. MADHU KUMAR2, AVINASH YADLAPATI3

 1M. Tech, Sree Vidyanikethan Engineering College, Tirupati, J N T University, Ananthapuram

2Assistant Professor, Dept.of Elect. and Comm. Engg, Sree Vidyanikethan Engineering College, Tirupati

3Senior director, Mirafra technologies, Hyderabad.

ABSTRACT:

Asynchronous FIFO is a memory file which uses synchronization for reading and writing with different

clocks, by performing the conditions of overrun and underrun. In essence, the transfer of data from read

domain to write domain with different frequencies. To generate overrun and underrun status flags the

synchronization takes place with the help of “preceding operation” of both the write and read pointers. In

this design the gray code converters are used to reduce switching activity and the low power DFT

technique was applied by considering the two phases that is scan insertion and ATPG Simulations. This

design is executed by using synthesizable Verilog RTL Code and verified with xilinx ISE simulator.

KEYWORDS: Asynchronous FIFO, synchronization, overrun, underrun, status flags, gray code

converter, Design for test, RTL Code.

1. INTRODUCTION:

First in first out is a memory file which allows the data in a queue and it uses the synchronization for

transferring the data. In this paper the low power DFT is implemented by using the asynchronous FIFO.

FIFO can be differentiated in two ways and they are

 1. Synchronous FIFO

 2. Asynchronous FIFO

In the synchronous FIFO data is steered into and out of the memory array by two pointers i.e.,

read pointer and write pointer. After completion of each operation the particular pointer is incremented to

allow access the next address pointer in the sequence of an array. By using the single clock the read and

write operations are performed by using same frequency.

 Where as in asynchronous FIFO two clocks are needed for read and write pointers both the

pointers needed to be access with two separate clock frequencies. One clock is used for composing the

data in to the memory and another clock for reading the data from the memory.

The concept in this paper is to reduce the power consumption using DFT (Design for testability) by

implementing the novel architecture of asynchronous FIFO by synchronizing the read and write pointers

and generating the overrun (FIFO_FULL) and underrun (FIFO_EMPTY) conditions with the help of

“preceding operation”.

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIRDC06036 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 204

2. SCHEMATIC SYMBOL:

Figure 1: Schematic symbol of asynchronous FIFO

Above figure 1 shows the schematic figure of an Asynchronous FIFO and the input signals are shown

below:

 wr_clk

 rd_clk

 Rst

 wr_en

 rd_en

 data_in

The output signals are:

 data_out

 Overrun

 Underrun

In asynchronous FIFO two clocks are used with different frequencies. wr_clk and rd_clk indicates

to the write clock and read clock respectively. Whereas the write and read operations are performed by

using those two clock signals. Both the read clock and write clocks are used for the write and read

operations with different frequency. Rst indicating the resetting signal which is used to reset the FIFO to

the known state. Write operation is formed if and only if wr_en is high. Similarly for Read operation also.

Data_in is input signal used for writing the data into the memory. And Data_out is the output signal used

for reading the data from memory. Here the two status flag generations i.e., Overrun and Underrun

conditions which are proposed to prevent the overflow (writing the data inside the FIFO) condition that is

requesting the write data after the completion of total address lines in the FIFO. Underrun is proposed to

prevent the underflow (reading the data from the FIFO) condition that is requesting the read data after the

FIFO is empty.

3. Implementation and Working of an Asynchronous FIFO:

This paper discusses the detail architecture of Asynchronous FIFO which is different from the other

designs. Because the entire architecture was designed using only with the help of mux’s and flip flops.

Before designing the FIFO, one should study and clearly understand the read and write pointers in

a FIFO, the entire operation is dependent on the pointers itself. Here these pointers address memory

locations. So, it is better to consider pointers and shift them accordingly instead of shifting the data that is

to be written or read from one address location to another address location. So, there is a reduction in

circuitry and complexity. This makes an efficient design.

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIRDC06036 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 205

Figure 2: Architecture of an Asynchronous FIFO

Firstly the read and write pointers are placed at the initial positions of the address locations and then

these pointers are incremented according to the assertion of read enable and write enable signals. In this

paper the memory specified was “n” number of address locations and of m-bit wide data. After

completion of read operation, the read pointer will immediately points to its next address location,

similarly for write operation too. After addressing all the “n” number of address locations the pointer

comes to its initial state depending upon the enable signals. If the data is continuously written into the

memory and the performance of read operation is not occurred, then the write pointer will come to its

initial state and will remain in the same state, even though the write enable signal is asserted. Similarly, it

is for read pointer too.

 In Synchronous FIFO, the write and read operations will takes place only with the help of single clock

with same frequency. The execution of read and write operations are sequential which means the

occurrence of write operation follows read operation immediately. By performing this read and write

operations continuously, The FIFO initially will be Empty at Reset and once the write happens in the

location the read follows. So, always we have to reset the FIFO to read operation. Since, the read and

write happens in the single clock and the transfer of data will be slow in the Synchronous FIFO.

 In Asynchronous FIFO for performing the read and write operations there will be two separate clocks

are needed, those may be operated at different clock frequencies. In this case the transition of data will

be faster with the synchronization of read and write clocks viz., will happen by using the two stage

synchronizer, this is also called as Dual-flop synchronizer. Primarily the data synchronization in high

speed data transfer takes place in Asynchronous FIFO.

3.1. Gray Code Converter:

Here the synchronization of read and write pointers will takes only with the help of “Gray Code

Converter” and the other characteristics if Gray code converter will be comes to an importance when

representing the successive binary numbers, for each binary increment there is reflection only with one bit

change, thus reducing the switching action and hence power. This lower switching action accomplishes to

less glitch formation and thus reducing any metastability.

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIRDC06036 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 206

DECIMAL

BINARY

GRAY

 0  

  

  

  

  

  

  

  

 Figure 3: Gray code sequence conversion

 When comparing the two pointers (representing 5-bit read and write address) reduction of

metastability will comes to an importance, the possibility of interpreting a signal transition from 1 to 0 or

0 to 1 as 0’s and 1’s respectively. The number of transitions will be reduced by the combinational logic

(xnor gate as an equivalency check) will become easier.

3.2. Synchronizer:

In general, the overrun and underrun conditions are generated based on the read and write positions

pointers. Here the synchronizer circuit performs the mechanism of by reading the gray code write pointer

with read clock domain and the gray code read pointer with write clock domain. Hence there is a need of

synchronizing circuit and the above figure 4 depicts the synchronization mechanism.

 Figure 4: synchronizer circuit

Here a one bit data is synchronized using two flip flops. The read data is synchronized with write

clock and write data is synchronized with read clock.

3.3. Generation of Overrun and Underrun Conditions:

 During the write operation, the first step is to check whether the FIFO is Full or not. If the FIFO is

full, there is no scope of write operation and write pointer incrimination, this results the overrun

condition. In other words there is a continues write operation and no read operation is performed then

the overrun condition is occurred.

 During the read operation, the first step is to check whether the FIFO is EMPTY or not. If the FIFO is

Empty, there is no scope of read operation and read pointer incrimination, this results the underrun

condition. In other words there is a continues read operation and no write operation is performed then

the underrun condition is occurred.

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIRDC06036 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 207

Figure 5: Overrun Status flag generation

Figure 6: Underrun Status flag generation

From figure 5 and figure 6, it is clear that the overrun and underrun conditions are generated by last

operation logic and the comparison of gray code pointers using a comparator with synchronization of read

pointer with write clock and the write pointer with read clock pointer. And both the comparisons between

read and write gray code pointers are done as follows:

 If the last operation is write, and both the pointers are equal. Then overrun status flag is asserted.

 If the last operation is read, and both the pointers are equal, Then underrun status flag is asserted

3.4. Scan Insertion and ATPG Simulations:

The Scan Insertion and ATPG Simulations are introduced out in the existing architecture, the paper will

dividing the scan clock for even and odd scan chains and thereby reducing the power constraints using the

Low Power DFT (design for test). The power constraints will be considering into three appropriate

conditions. Firstly, the two techniques are applied to different locations in the implemented architecture

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIRDC06036 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 208

and thereby considering the double edge triggering method. Then the power will be reduced from

previous existing to DET method to an extent of 0.00032W to 0.00027W. Whereas from DET method to

considering the frequency by halving the total hierarchy power will be utterly diminishes to an greater

extent of 0.00009

Table 1: device utilization summary

Table 2: Power comparison by considering three techniques for proposed architecture

4. Conclusion:

Asynchronous FIFO considering overrun and underrun conditions was implemented using Xilinx ISE.

This implementation was novel since overrun and underrun conditions helped in generating status flags

with the help of a signal i.e., previous operation. The Gray code counter employees in uses a comparator

along with the preceding operation for the generation of overrun and underrun status flags. Continuous

writing of data into the memory, continuous reading of data from memory and simultaneous reading and

writing from the memory are verified with different test cases. All these test cases are verified using

Xilinx ISE Simulator. The work involves employing scan insertion and ATPG flow. The power analysis

of the double edge triggered FIFO was done with reference to available Asynchronous FIFO with Scan

insertion and ATPG. It was observed that 15.62% of power reduction. It was also compared by halving

the frequency with reference to double edge triggered. It was observed that there was 66.6% of power

reduction. Finally the power was reduced by 71.87%.

The future scope will be by implementing the design by using the existing techniques like BIST

for the self-testing analysis and the reduction for power consumption the CPF (common power format)

and the UPF(unified power format) will be preferred in the synopsis tool for better results.

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIRDC06036 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 209

REFERENCES:

[1] http://icslwebs.ee.ucla.edu/dejan/classwiki/images/9/97/Lec-15 _Multi-Vdd.pdf.

[2] http://www.engr.iupui.edu/~skoskie/ECE362/lecture_notes/LNB25_html/text12.html.

[3] https://www.techwalla.com/articles/difference-between-synchronous-and-asynchronous-data-

 transfer.

[4] http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.519.8623&rep=rep1&type=pdf

[5] A Murali, K Hari Kishore, D Venkat Reddy, "Integrating FPGAs with Trigger Circuitry Core

System Insertions for Observability in Debugging Process”, Journal of Engineering and Applied

Sciences, ISSN No: 1816-949X, Vol No.11, Issue No.12, December 2016, pp:2643-2650.

[6] https://www.researchgate.net/publication/224333768_A_robust_ultralow_power_asynchrono

Us_FIFO_memory_with_self-adaptive_power_control.

[7] https://web.eic.nctu.edu.tw/lpsoc/courses/MS2017Spring/supplemental/20Subthreshold%20A

Synchronous%20FIFO.pdf

[8] http://ijcsit.com/docs/Volume%205/vol5issue02/ijcsit20140502241.pdf.

[9] G. Ramesh, V. Shivraj Kumar, K. Jeevan Reddy,” Asynchronous FIFO Design with Gray Code

Pointer for High Speed AMBA AHB Compliant Memory controller”, IOSR Journal of VLSI and

signal processing (IOSR-JVSP), volume: 1, Issue 3, Nov-Dec 2012, pp: 32-37.

[10] https://www.xilinx.com/support/documentation/application_notes/xapp258.pdf

[11] https:// www.oocities.org/deepakgeorge2000/vlsi_book/Asynch1.pdf

[12]Mahesh Mudavath, K Hari Kishore, D Venkat Reddy, "Design of CMOS RF Front-End of Low Noise

Amplifier for LTE System Applications Integrating FPGAs” Asian Journal of Information Technology,

ISSN No: 1682-3915, Vol No.15, Issue No.20, December 2016 pp: 4040-4047.

[13] S Nazeer Hussain, K Hari Kishore "Computational Optimization of Placement and Routing using

Genetic Algorithm” Indian Journal of Science and Technology, ISSN No: 0974-6846, Vol No.9, Issue

No.47, December 2016, pp: 1-4.

[14] K Hari Kishore, K Akhil, G Viswanath, N Pavan Kumar “ Design and Implement of 8X8 Multiplier

using 4-2 Compressor and 5-2 Compressor”, International Journal of Reconfigurable and Embedded

Systems, ISSN 2089-4864, Volume 5, Number 3 , November 2016, pp. 131-135.

[15] P Bala Gopal, K Hari Kishore “An FPGA Implementation of On Chip UART Testing with BIST

Techniques”, International Journal of Reconfigurable and Embedded Systems, ISSN 2089-4864, Volume

5, Number 3 , November 2016, pp. 176-182.

[16] N Bala Gopal, K Hari Kishore "Analysis of Low Power Low Kickback Noise in Dynamic

Comparators in Pacemakers” Indian Journal of Science and Technology, ISSN No: 0974-6846, Vol No.9,

Issue No.44, November 2016 ,pp: 1-4.

[17] N Bala Gopal, Kakarla Hari Kishore "Reduction of Kickback Noise in Latched Comparators for

Cardiac IMDs” Indian Journal of Science and Technology, ISSN No: 0974-6846, Vol No.9, Issue No.43,

November 2016, pp: 1-6.

[18] Nidamanuri Sai Charan, Kakarla Hari Kishore "Recognization of Delay Faults in Cluster Based

FPGA Using BIST” Indian Journal of Science and Technology, ISSN No: 0974-6846, Vol No.9, Issue

No.28, July 2016, pp: 1-7.

[19] Avinash Yadlapati, Hari Kishore Kakarla "Validating Advanced Extensible Interface Protocol using

Randomized Verification Environment" Research Journal of Applied Sciences, Engineering and

Technology, ISSN No: 2040-7459, Vol No.13, Issue No.1, July 2016, page: 42-47.

[20]Sravya Kante, Hari Kishore Kakarla, Avinash Yadlapati," Design and Verification of AMBA AHB-

Lite protocol using Verilog HDL" International Journal of Engineering and Technology, E-ISSN No:

0975-4024, Vol No.8, Issue No.2, April-May 2016, pp:734-741.

[21] N Bala Gopal, Kakarla Hari Kishore "Reduction of Kickback Noise in Latched Comparators for

Cardiac IMDs” Indian Journal of Science and Technology, ISSN No: 0974-6846, Vol No.9, Issue

No.43, November 2016, pp: 1-6.

[22] S Nazeer Hussain, K Hari Kishore "Computational Optimization of Placement and Routing Using

Genetic Algorithm” Indian Journal of Science and Technology, ISSN No: 0974-6846, Vol No.9, Issue

No.47, December 2016, pp: 1-4.

http://www.jetir.org/

